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Abstract: The paper presents an approach to teaching the mathematical formalism to engineering majors by 

using interactive computer algebra system. The theory of random processes is a core element of mathematics 

training in an engineering university. The course is designed for students with a previous background in the 

probability theory and mathematical statistics, and with basic competence in some computer mathematical 

package. In our case it was Wolfram Mathematica. We provide examples to explain and illustrate our concept 

and discuss advantages of the method for students and teacher. These materials can also be used in a lecture 

course not supported by interactive computer systems or by students with insufficient mathematical 

programming skills. The examples we give belong to the basic concepts of the theory of random processes. We 

compare two groups of students to assess the results: Group I was taught in a “traditional” format without 

using interactive computer technologies, Group II had additional lessons in computer class and was involved in 

the modelling process. Statistically significant differences between groups were established (at 10% significance 

value). Another outcome was a positive attitude of students towards the proposed method. The presented 

samples are small, which makes further investigation desirable.  
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I. Introduction 
The modern science and technology and market demands force universities to focus on the students’ 

personal growth, creative application of the acquired competences, and fast adaptation to the professional 

requirements. Students must be able to learn independently, find relevant information in various sources, 

analyze, systematize, reason, and draw adequate conclusions [1]. 

The probability theory, mathematical statistics, and theory of random processes are the key components 

of fundamental mathematical training in an engineering university [2]. To solve the nature of random processes, 

students require the integrated knowledge of various mathematical disciplines: calculus, algebra, differential 

equations etc. Interdisciplinary links are especially important in the context of the students’ future careers in 

engineering [3]. 

The new educational technologies aim to systematize the students’ knowledge, increase their 

motivation and professional adaptation, encourage achievement [4]. At present interactive computer systems are 

in high demand in education, especially within the framework of the mathematical disciplines utilized for 

engineering and scientific calculations [5]. The modern level of science and technology often involves 

numerical analysis of large amount of data (for example, Big data), so the analytical solution of the problem 

may be unfeasible or time-consuming. Therefore, the proficiency in computer data analysis and modelling 

becomes especially significant within the framework of systematic approach [6, 7] Soft skills in mathematical 

programming help solve many computational problems with high accuracy, speed and efficiency. 

Spreadsheets are very common in statistical calculations. So it is one of the main analytical tools 

included into non-mathematical curriculum [8, 9]. However, these programs are not very convenient for 

modelling and analyzing phenomena defined by formulas. Consequently, interactive computer mathematical 

packages, such as Maple, Mathematica, MatLab, MathCAD are very convenient for use by students majoring in 

engineering [10-12]. Such systems include built-in matrix and complex arithmetic, support work with algebraic 

polynomials, enable numerical integration of differential and difference equations, plot various types of graphs, 

three-dimensional surfaces, and contain built-in procedures for modeling and analyzing random variables. 

Mathematical packages employ the conventional method of displaying mathematical objects and intuitive 

operating environment allowing the user to state problems and obtain solutions in the usual mathematical form 

without resorting to coding. The user-friendly interface of such systems also contributes to their popularity. 

Another feature of this software is that it stimulates the mathematical way of thinking. 
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Computer algebra systems allow the teacher to create templates for typical problems, where students 

can vary the initial data and obtain different intermediate and final results as analytical dependencies or graphic 

images [13]. Moreover, such templates do not require from the students deep understanding of these 

systems [10]. 

This paper presents certain methodological aspects of training engineering majors to understand and 

analyze mathematical formalism in the theory of random processes. Our experience shows that students very 

often learn basic mathematical formulas without understanding their meanings. Engineering students may also 

find it difficult to quickly analyze the properties of one- and two-dimensional functions analytically, losing the 

train of thought during lectures or practical lessons. To solve this discrepancy we suggest using computer 

algebra systems (CAS) in lectures and practical lessons to model and visualize the phenomena under 

consideration. We present a concept of teaching the basic notation for the theory of random processes using an 

innovative method. We consider basic properties of Wiener random process and discuss basic concepts of 

covariance and correlation functions, one- and two-dimensional distributions of the process and computer 

methods to explain and visualize them. Our examples are demonstrative and fairly simple. A similar research 

dealing with spreadsheets is presented in [14]. In the current paper we use the CAS Wolfram Mathematica 

which is accompanied by a large pool of examples and training materials available online. Also there exists a 

large amount of books with extra information and examples [15, 16]. 

For the sake of convenience, we present mainly monochrome images and do not explain and provide 

some of options used, because they can be neglected without affecting the content. 

 

II. The Problem Of Understanding The Meaning Of Mathematical Formalism 
The main idea of the approach is to illustrate the mathematical formalism by examples using interactive 

computer methods. The course under consideration is “The theory of random processes” for the third-year 

engineering majors. The course is designed for students who have previously studied the probability theory and 

mathematical statistics and have basic skills in any computer algebra system (CAS). However, our students may 

have used different mathematical packages out of the great number that are currently available. And some 

students have used none at all. That means that the examples should be suitable even for those students who 

have had no experience with Mathematica. 

 

2.1. Preliminaries 

The fundamental concept in the engineering application of the probability theory is normal distribution First of 

all, we give the definition of probability density function of bivariate normal law [17] with mean vector 

1 2( , )m m  and covariance matrix 
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where 1x x m  , 2y y m  . Marginal probability density function of the first component is: 

2

2

11

1
( ) exp .

22

x
f x

 
  

  


                                                               (2) 

So we derive conditional probability density function [17] of the second component when the value of the first 

component is known: 
2
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The formulas (1)-(3) are most likely to be seen as rather complicated by most students. It is difficult to 

apply them to the analysis of the normal random processes properties. In engineering, distribution parameters 

may also be quite complex. So it is very effective to show the Mathematica built-in functions which produce, for 

example, formula (1). Function MultinormalDistribution[µ,] represents a multivariate normal distribution with 

mean vector μ and covariance matrix Σ. Usual statistical functions [15, 16] are applicable as well, for example 

CDF, PDF, Mean etc. As the students will have already covered this material, we don’t need to explain it in 

detail. 

Let us proceed to the analysis of one of the most common normal random processes. We consider 

Wiener random process [18] , 0,tw t   which is a continuous-time and continuous-state random process 

specified by the following three conditions: 

1) 0 0;w   
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2) the increments of the process are independent, i. e. for 1n   and 1 20 nt t t     random variables 

1 2 1 3 2 1
, , , ,

n nt t t t t t tw w w w w w w


    are mutually independent; 

3) the increments are distributed by normal law, i. e. t sw w  has normal distribution with zero mean and 

variance 
2 ( )t s   for t s . 

Further we assume that 1.   

 

2.2. Example 1. Modelling A Path 

First of all, let us model a path of the process and generate its plot (fig. 1): 

proc=WienerProcess[]; 

sample1=RandomFunction[proc,{0, 5, 0.01}]; 

ListLinePlot[sample1] 

 
Figure 1. Path Of Wiener Process tw  with 1  

 

For training purposes, it is essential that the students should be involved into modeling (if possible) [2] 

and asked to replot the process path several times to consider different cases. We note again that this does not 

require special knowledge of the CAS Mathematica [10]. 

 

2.3. Example 2. One- And Two-Dimensional Distributions Of tw  

Next we look at one-dimensional distribution of tw  for 1 . Covariance and correlation functions of tw  [18] 

are: 

( , ) min{ , }K s t s t , 
min{ , }
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                                                   (4) 

respectively, and one-dimensional probability distribution function is given by the formula: 
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Functions (4) and (5) can be derived in Mathematica: 

R[s_,t_]:=CorrelationFunction[proc,s,t]; 

K[s_,t_]:=CovarianceFunction[proc,s,t]; 

PDF[NormalDistribution[0,Sqrt[K[t,t]]],x] 

It is reasonable to plot the graphs: 

Plot3D[K[s, t], {s, 0, 5}, {t, 0, 5}] 

Plot3D[R[s, t], {s, 0, 5}, {t, 0, 5}] 

Plot[Evaluate@Table[PDF[NormalDistribution[0, Sqrt[K[t, t]]], x], {t, {1, 3, 5}}], {x, -3, 3}] 
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Figure 2. Plot of covariance ( , )K s t  (left) and correlation ( , )R s t  (right) functions of Wiener process tw  

with 1  

 

 
Figure 3. Plot of one-dimensional probability density function (5) of Wiener process tw  with 1  for 

different values of t  

 

We obtain graphs shown in fig. 2 (for covariance and correlation functions) and fig. 3 (for probability 

density function). The last plot (fig. 3) demonstrates that the process volatility increases with time. At this stage 

it is advisable to return to the plot of the path (fig. 1) and explain the impact of that fact. 

Let us proceed to the properties of two-dimensional distributions [18]. For fixed s t , the random vector 

( , )s tw w  has normal distribution with the zero mean 
1 2( , ) (0,0)m m   and covariance matrix 
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From (4) we conclude that ( , ) 0R s t   if s  is fixed and t   . Plots of two-dimensional and conditional 

densities help us to explain this. Let 1s  . We use Mathematica built-in functions for covariance function of 

Wiener process to plot the graph and animate it. 

Dist1[s_,t_]: = MultinormalDistribution[{0, 0}, {{K[s, s], K[s, t]}, {K[s, t], K[t, t]}}]; 

Animate[Plot3D[PDF[Dist1[1, t], {x, y}], {x, -3, 3}, {y, -3, 3}],{t, 1.5, 5.0}] 
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Figure 4. Plot of two-dimensional probability density function (6) of Wiener process tw  with 1  for 

1s   and different values of t  with animation controls 

 

The result is presented in fig. 4. By varying the plot parameters and initial values we can obtain a great 

amount of similar plots. This illustrative material can be used in class even without interactive computer support 

[13]. 

 

2.4. Example 3. Conditional Distributions 

Further we consider the conditional distribution of tw  if value of the process sw  is known (0 ).s t   

Substituting (5) and (6) into (3) we obtain the conditional density of tw  if 0sw x : 
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For further practice the students can be assigned with formula (7) in Mathematica. Let 1s   and find 

value 0x : 

x0=Select[sample1["Path"],#[[1]]==1&][[1,2]] 

For the path in Fig. 1 1 0 1.88w x   . Now we plot functions (5) and (7) to compare.  

 

 
Figure 5. Conditional (solid line) and absolute (dashed line) probability density functions of Wiener 

process tw  with 1  and expected value 0 1,88x    for 1.5t   (left) and 3t   (right) and 1s   

 

As expected (Fig. 5), the greater is the difference t s , the greater is the conditional distribution 

volatility of process tw . We also notice that the distribution center moves to 0x  and dispersion of the 

conditional distribution is less than dispersion of the absolute distribution. Finally, we combine the plot of path 

and the expected value 0x : 

Show[ListLinePlot[sample1], Plot[x0, {t, 1, 5}]] 
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The result is presented in Fig. 6. 

 
Figure 6. Plot of the path of Wiener process tw  with 1  and expected value 0x  (dashed line) of the 

process tw  for 1t  . 

 

2.5. Example 4. Modelling The Distribution Of Running Maximum 

Let 
0

supt s
s t

m w
 

  be the supremum value of the process till time t  (“running supremum” or “running maximum” 

[18]). Fig. 7 can be used to demonstrate the running maximum concept to the students. Additionally, the 

students can remodel the path using the following template: 

sample2 = RandomFunction[proc, {0, 5, 0.01}]["Path"]; 

L = Length[sample5]; 

max[l_] := Last[SortBy[l, Last]][[2]]; 

sample3 = Table[{sample2[[i, 1]], Last[SortBy[Take[sample2, i], Last]][[2]]}, {i, 1, L}]; 

ListLinePlot[{sample2, sample3}] 

 
Figure 7. Plot of paths of Wiener process tw  with 1  and running maximum tm . 

We create the function max[l_] := Last[SortBy[l, Last]][[2]] which generates maximum value for the list l if l 

represents the path of tw . We review the way it works in practical lessons. 

Next we consider the distribution of tm . The cumulative distribution function and probability density functions 

of tm  [18] are: 
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Let us see the plots (Fig. 8) of functions (8) and (9) for different values of t . 
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Figure 8. Plots of cumulative distribution function ( ; )mF x t  (8) (left) and probability density function 

( ; )mf x t  (9) (right) for t  =1, 3, 5 

 

The next step is to model the distribution of tm  for any fixed value of t . We generate a group of paths 

and estimate empirical distribution of the running maximum .tm  Our key teaching objective is to analyze the 

distributions and compare them. Let 2t  . 

sample4 = Table[max[RandomFunction[WienerProcess[],{0,t,0.01}]["Path"]], {i, 1, 200}]; 

SampleDist = EmpiricalDistribution[sample4]; 

Fmax[x_, t_] := 2CDF[NormalDistribution[0, Sqrt[t]], x]-1; 

fmax[x_, t_] := D[Fmax[x, t], x]; 

Plot[{Fmax[x, t], CDF[SampleDist, x]}, {x, 0, 5}] 

Show[Histogram[sample4, Automatic, "PDF"], Plot[Evaluate@fmax[x, t], {x, 0, 5}] 

 

 
Figure 9. Plot of cumulative distribution functions of tm  for 2t  : red curve – theoretical function (8); 

black curve – empirical function. 

 

Fig. 9 demonstrates that for 200 paths the empirical and theoretical distributions are very close. During practical 

lessons students are asked to vary t  and the number of paths to explore the properties of the distributions. 

 

III. Results 
We tested our teaching approach on two groups of the 3

rd
 year students taking a course in the theory of 

random processes. Group I consisted of 49 students and was taught in a “traditional” way with lectures and 

practical lessons without the CAS Mathematica. Group II consisted of 53 students and had additional classes in 

the computer modelling process. After that all students took a test consisting of 5 questions on “Random 

properties of Wiener process”. Each test question was supplied with 3 answer options only one of which was 

correct. We calculated the number of correct answers for each student. A pass grade required minimum 3 correct 

answers. Results for the two groups are presented in Table 1. Percentage of correct answers is presented in Fig. 

10.  

 

Table 1. Number of correct answers for two groups and value of chi-square test statistic with p-value. 

Number of 
correct answers 

Group I Group II Sum 
Chi-square 

statistic 
p-value 

<=2 17 7 24 
7.10 0.069 

3 14 17 31 
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4 13 19 32 

5 5 10 15 

Sum 49 53 102 - - 

 

 
Figure 10. Percentage of correct answers for two groups. 

 

Fig. 10 shows that students of Group II demonstrate better results in comparison with students of 

Group I. We compare the distributions of the number of correct answers in two groups by the chi-square test to 

establish significant differences. The results are presented in table 1. We conclude that computer visualization 

improves understanding and reproduction of the learning material at 10%-significance level. The presented 

sample is fairly small, so further investigation is necessary.  

We additionally questioned students of Group II to understand their opinion. We asked two questions: 

1) Have you previously used any computer algebra system? 

2) Do computer lessons improve your understanding of the study material? 

We received 67% of positive answers for the first question, and 78% for the second. We can conclude that the 

students’ attitude to the teaching approach under consideration is arbitrary positive.  

It is worth noting that some questions and suggestions of our students enabled us to revise and significantly 

improve the teaching material. 

 

IV. Conclusion 
It was shown that presented in paper approach to teaching the Theory of Random Processes with 

support of CAS Mathematica helps significantly improve education outcomes for engineering students 

comparatively to the students who didn’t use those materials. Students attitude towards the method was also 

positive. We give detailed examples of used interactive material which can be a basis for other researchers to 

construct analogous didactic complexes. The presented samples are small, so the further investigation should be 

mentioned. 
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